Finding Hidden Communities in Complex Networks from Chaotic Time Series

نویسنده

  • Jiancheng Sun
چکیده

Recent works show that complex network theory may be another powerful tool in time series analysis. In this paper, we construct complex networks from the chaotic time series with Maximal Information Coefficient (MIC). Each vector point in the reconstructed phase space is represented by a single vertex and edge determined by MIC. By using the Chua’s circuit system, we illustrate the potential of these complex network measures for the detection of the topology structure of the network. Comparing with the linear relationship measure, we find that the topology structure of the community with MIC reveals the hidden or implied correlation of the network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolving Predictors for Chaotic Time Series

Neural networks are a popular representation for inducing single-step predictors for chaotic times series. For complex time series it is often the case that a large number of hidden units must be used to reliably acquire appropriate predictors. This paper describes an evolutionary method that evolves a class of dynamic systems with a form similar to neural networks but requiring fewer computati...

متن کامل

River Discharge Time Series Prediction by Chaos Theory

The application of chaos theory in hydrology has been gaining considerable interest in recent years.Based on the chaos theory, the random seemingly series can be attributed to deterministic rules. Thedynamic structures of the seemingly complex processes, such as river flow variations, might be betterunderstood using nonlinear deterministic chaotic models than the stochastic ones. In this paper,...

متن کامل

Model Based Method for Determining the Minimum Embedding Dimension from Solar Activity Chaotic Time Series

Predicting future behavior of chaotic time series system is a challenging area in the literature of nonlinear systems. The prediction's accuracy of chaotic time series is extremely dependent on the model and the learning algorithm. On the other hand the cyclic solar activity as one of the natural chaotic systems has significant effects on earth, climate, satellites and space missions. Several m...

متن کامل

فاصله اطلاعاتی و کاربرد آن در سریهای زمانی

  In this paper a new method is introduced for studying time series of complex systems. This method is based on using the concept of entropy and Jensen-Shannon divergence. In this paper this method is applied to time series of billiard system and heart signals. By this method, we can diagnose the healthy and unhealthy heart and also chaotic billiards from non chaotic systems . The method can al...

متن کامل

Neural Networks for Chaotic Time Series Prediction

There are many systems that can be described as chaotic: The readings from seismic monitoring stations in mines which describe the rock dynamics, from EKG which describe the fibrillation of a cardiac patient’s heart, and the share prices in financial markets which describe the optimism about the earning potential of companies are examples of observations of deterministic, non−linear, dynamical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016